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Afnan M. Alhassan * , The Alzheimer’s Disease Neuroimaging Initiative † and The Australian Imaging
Biomarkers and Lifestyle Flagship Study of Ageing ‡

College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia
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† Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

‡ Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle
flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) which was made available at the ADNI database (www.loni.usc.edu/ADNI). The AIBL researchers
contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at
www.aibl.csiro.au.

Abstract: Several neurological illnesses and diseased sites have been studied, along with the anatomi-
cal framework of the brain, using structural MRI (sMRI). It is critical to diagnose Alzheimer’s disease
(AD) patients in a timely manner to implement preventative treatments. The segmentation of brain
anatomy and categorization of AD have received increased attention since they can deliver good
findings spanning a vast range of information. The first research gap considered in this work is
the real-time efficiency of OTSU segmentation, which is not high, despite its simplicity and good
accuracy. A second issue is that feature extraction could be automated by implementing deep learning
techniques. To improve picture segmentation’s real-timeliness, enhanced fuzzy elephant herding
optimization (EFEHO) was used for OTSU segmentation, and named EFEHO-OTSU. The main
contribution of this work is twofold. One is utilizing EFEHO in the recommended technique to seek
the optimal segmentation threshold for the OTSU method. Second, dual attention multi-instance
deep learning network (DA-MIDL) is recommended for the timely diagnosis of AD and its prodromal
phase, mild cognitive impairment (MCI). Tests show that this technique converges faster and takes
less time than the classic OTSU approach without reducing segmentation performance. This study
develops a valuable tool for quick picture segmentation with good real-time efficiency. Compared to
numerous conventional techniques, the suggested study attains improved categorization performance
regarding accuracy and transferability.

Keywords: sMRI; AD; OTSU segmentation; EFEHO; DA-MIDL

MSC: 62H35; 68U10

1. Introduction

The most prominent type of dementia is Alzheimer’s disease (AD), accompanied
by a gradual decline in cognitive capabilities. Its symptoms range from forgetfulness in
the early phases to speech loss and immobility in the late phases. Alzheimer’s, on the
other hand, differs from other geriatric diseases in that its initial symptoms are frequently
confounded with those of old age, and its commencement is commonly missed. According
to the Alzheimer’s and Related Disorders Society of India (ARDSI)’s Dementia India Report
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2010, around 3.7 million Indians had dementia in 2010, with the number expected to climb
to 7.6 million by 2030 [1]. As a result, correct AD diagnosis is critical, especially in its early
phases. Traditionally, AD diagnosis is made using a neuropsychological test in conjunction
with structural imaging [2].

MCI and AD are linked to brain grey matter loss, and therefore neuropathology
changes might be detected years before AD is diagnosed [3]. Predicting MCI-to-AD
conversion has been performed using neuroimaging biomarkers [4]. The non-invasiveness,
excellent resolution, and low cost of structural MRI make it a popular imaging technique
in this research. MCI is similar to AD and NC, but milder, and pathological differences
are observed between converters and non-converters. Thus, converting/non-converting is
more complex than AD/NC.

A random classifier is the best predictor of MCI-to-AD conversion among eleven
MRI-based approaches [5]. MRI images are recorded in a shared space to reduce inter-
subject variability [6]. However, the registration may alter the AD pathophysiology and
lose some relevant details. The categorization performance was improved by removing the
age-related impact [7].

Machine learning (ML) strategies detect MCI-to-AD conversion effectively [8]. It has
recently become possible to discover and classify patterns in photos using deep learning [9].
CNNs are the most extensively used deep learning architecture due to their image cate-
gorization and analysis [10]. This encouraged us to create a CNN-based AD conversion
diagnosis system. As a result of using the same template space, most existing deep learning
techniques for AD diagnosis still use manual pre-defined ROIs with expert knowledge to
develop detection concepts using CNNs.

This means that deep learning-based sMRI diagnosis has to improve the diagnosis
of discriminative characteristics, such as instructive micro-structures inside local areas
and critical areas in a global image that may include segmentation mistakes. The main
contributions of this work are as follows:

• Initially, the two AD database such as ADNI and AIBL are taken as the input.
• Then, the pre-processing steps such as geometry correction, linear registration and

skull-stripping are done.
• Third, EFEHO to OTSU is suggested for segmentation.
• Finally, the findings show that our DA-MIDL technique beats numerous existing

techniques regarding reliability and generality.

The remaining article is structured as: Section 2 discusses conventional approaches,
Section 3 briefs the suggested segmentation technique and DA-MIDL technique, Section 4
depicts the experimental findings and outcomes for various AD diagnosis tasks, and
Section 5 concludes with future directions.

2. Related Work

Numerous studies in the literature were committed to building automatic strategies to
monitor AD-related functional and structural brain abnormalities.

2.1. Meta-Heuristic Algorithms

Mirjalili et al. [11] proposed Grey Wolf Optimizer inspired by grey wolves, and the
findings on the unimodal functions demonstrate the way in which GWO is used efficiently.
The exploration capability of GWO is corroborated by the results on multimodal functions.
The results achieved with semi-real and actual issues show the practical performance
of GWO.

Zamani et al. [12] presented an innovative bio-inspired algorithm based on starlings’
behaviors during their exciting murmuration referred to as starling murmuration optimizer
(SMO), which helps in solving complicated and engineering optimization issues to be the
best appropriate application for metaheuristic algorithms.
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Nadimi-Shahraki et al. [13] proposed a migration-based moth–flame optimization (M-
MFO) algorithm. M-MFO is chiefly focused on enhancing the location of unfortunate moths
by migrating them at random during the initial iterations utilizing a random migration
(RM) operator, maintaining the solution’s versatility by saving new qualified solutions
individually in a guiding repository, and, finally, working around the positions stored in
the guiding repository, applying a guided migration (GM) operator.

Therefore, various kinds of metaheuristic algorithms are required for the approxi-
mation of the best solutions for various optimization problems, and this represents the
basic inspiration for scholars to enhance the present metaheuristic algorithms or propose
innovative techniques specifically for segmentation.

2.2. Machine Learning and Deep Learning Algorithms

Fan et al. [14] and Magnin et al. [15] used an SVM approach to categorize and forecast
distinct AD operations using structural brain magnetic resonance imaging (MRI) informa-
tion. The SVM technique and extracted MRI information are integrated into this paper to
improve categorization diagnosis outcomes.

Liu et al. [16] explicitly modelled structural information in multi-template information,
as is recommended for automatic detection of AD and its premonitory phase, MCI. Finally,
an ensemble categorization is utilized to integrate the outputs of all SVM classifiers. Li
et al. [17] developed a powerful deep learning procedure to recognize AD progression
phases using MRI and PET information. The dropout strategy improved deep classical
learning by eliminating weight coadaptation, a common cause of overfitting. The deep
learning framework includes stability picking, adaptive learning, and multitask learning.

Using brain network connectivity pattern analysis, Wang et al. [18] provided a robust
technique for AD, MCI, and standard control subject categorization in size constrained
fMRI information samples. The suggested regularized LDA is then used to project the
feature vectors onto a one-dimensional axis. Lastly, to complete the categorization task, an
AdaBoost classifier is used.

LeNet, as with most DNN techniques, employs a MaxPooling layer to reduce di-
mensionality by removing information from minimum valued elements. To maintain the
network’s minimal valued elements, we constructed an individual layer that performs the
Min-Pooling function by Hazarika et al. [19]. Zhu et al. [20] presented a DA-MIDL for the
timely detection of AD and MCI in its premonitory phase.

Song et al. [21] suggested an AMGNN technique for AD diagnosis. First, a metric-
based meta-learning technique for independent testing is introduced. To improve per-
formance under minor sample size conditions, tiny graphs are used in the meta-tasks.
However, it is not easy to apply CNNs for AD diagnosis due to the scarcity of imaging
information. We devise a revolutionary deep learning framework by Feng et al. [22]. As a
comparison approach, the HFCN paradigm was used by Liu et al. [23]. Lian et al. [24] built
a DMIL framework utilizing patch-wise input information. In addition to diagnosis, AD
segmentation gives structural information about aberrant and normal tissues. It is regarded
as a texture categorization issue.

2.3. Hybrid Model

Abuhmed et al. [25] designed and assessed two new hybrid deep learning models
for AD progression detection. These models depend on the combination of several deep
bidirectional long short-term memory (BiLSTM) frameworks.

Basheera et al. [26] studied a new multiclass classification of Alzheimer’s disease
that employs convolution neural network. A total of 18,017 magnetic resonance imaging
fragments are gathered from 1820 T2-MRI volumes. Hybrid enhanced independent com-
ponent analysis was utilized to carry out the segmentation. Segmented gravy matter was
considered for the classification process. The proposed technique performs better both in
the form of a binary classifier and multiclass classifier.
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Although the above-discussed techniques attained good results in the detection of AD.
The SVM has a limitation in that the feature extraction step needs a human expert, and this
thus reduces the accuracy as wel1. Although the above-discussed DL methods are good
in automatic feature extraction, all are good in a small dataset. So, this work focused on
solving these two main issues through the proposed DA-MIDL method.

3. Proposed Methodology for AD Detection

Usually, medical images have inhomogeneity, strange noise, and a complex structure.
Thus, medical image segmentation is a difficult task for denoising and deblurring. Applying
EFEHO to the OTSU strategy is employed for image segmentation. Figure 1 depicts the
proposed AD detection’s basic outline. Then, we present the DA-MIDL AD detection
technique.
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Figure 1. The basic structure of the suggested approach for AD detection.

3.1. Input Database and Image Pre-Processing

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu (accessed on 3 January 2022)) was utilized to compile the data for this article
(adni.loni.usc.edu). The principal investigator Michael W. Weiner, MD, founded the ADNI
in 2003 as a public-private cooperation. The major purpose of ADNI was to see whether
serial MRI, PET, other biological markers, and clinical and neuropsychological assess-
ments could be used to track the evolution of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Visit www.adni-info.org (accessed on 3 January 2022) for the
most up-to-date information. The Australian Imaging, Biomarker and Lifestyle Flagship
Work of Ageing (AIBL) database (https://aibl.csiro.au (accessed on 3 January 2022)) was
used in this study. The data were collected by the AIBL study group. The AIBL study’s
methodology has been reported previously [27].

There are 1193 1.5T/3T T1-weighted structural MRI (sMRI) scans in the ADNI dataset
from participants during their own baseline/screening visit (i.e., the first examination)
(i.e., ADNI-1, ADNI-2, and ADNI-3). The participants can be classified as AD, MCI, or
NC (standard control) based on conventional clinical criteria such as MMSE scores and
Clinical Dementia Rating (CDR). The AIBL dataset includes baseline sMRI scans from
496 individuals: 79 AD, 17 pMCI, 93 sMCI, and 307 NC.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
www.adni-info.org
https://aibl.csiro.au
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3.2. Segmentation Using EFEHO to OTSU Technique

Owing to its simplicity and precision, OTSU segmentation is inefficient in real-time.
This study introduces EFEHO to OTSU segmentation, establishing an EFEHO-OTSU seg-
mentation procedure. The suggested procedure searches for the appropriate OTSU thresh-
old for segmentation, effectively segmenting the image’s background and target, resulting
in the best effect and lowest calculation cost. Each metaheuristic algorithm discussed in
related work has specific advantages and weaknesses. If one algorithm uses minimum
memory, less running time, and has improved final function value then that algorithm
is considered as the best algorithm for the given dataset. By means of the comparison
process [28], the best optimization algorithm EHO is chosen for segmentation.

OTSU image segmentation technique: The OTSU technique uses a single threshold to
divide an image into the foreground and background. If the total amount of pixels in the
image is T, the probability P of all pixel points for a given greyscale value is

Pi =
Ti
T

In which i is the grey value, and Ti is the amount of pixels. Considering the image to
be segmented as per the threshold th, the probability Pi of the number of pixels k occurring
in the foreground Ω0 and background areas Ω1 is

Ω0 =
k

∑
i=0

Pi = Ω(k); Ω1 =
L−1

∑
i=k+1

Pi = 1−Ω(k)

Additionally, the interclass variance Y of the two areas segmented by the threshold
th is

Y(th) = Ω0(µ0 − µ)2 + Ω1(µ1 − µ)2

where µ is the mean value of the image, and µ0 and µ1 are the mean value of the target area
and the background area, respectively. Assuming that the image grey level is S and that the
threshold group th1, th2, . . . , thn(0 ≤ th1 ≤ th2 ≤ thn ≤ S− 1) divides the image into t + 1
individual intervals, the total variance between classes is

Y(th1, th2, . . . , thn) =
t−1

∑
i=0

t

∑
j=i+1

ΩiΩj
(
µi − µj

)2

where Ωi and Ωj are the probability of two areas. µi and µj are the means of two portions.
Elephant herding optimization: The EHO technique was suggested by [29] and is

a SI technique. It is inspired by elephant herding behavior in nature. This behavior is
summarized as follows. Elephants are divided into subgroups called clans, each with
several elephants. A matriarch leads each clan, while adult male elephants leave their
clans and live alone. In EHO, these actions are led by two operators: clan update and
clan separation Clan update shifts elephants and matriarchs around in each clan, while
separation increases population variety later in the search phase.

Separating operator and clan updating operator are EHO behavior categorizations.
EHO beats existing procedures for pattern matching. EHO procedure is defined as follows.
An elephant El group is led by a matriarch, usually the eldest cow. Each member ‘j’ of clan
‘i’ shifts according to the matriarch where the matriarch is the elephant cli with the best
fitness value in a generation:

Fitness = Elnewcli,j = Elcli,j + α
(
Elbest,cli

)
× r
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In clan i, Elnew,cli,j depicts an elephant j in its present location and Elcli,j is its previous
location. The best solution of clan cli is the Elbestcli , where α ∈ [0, 1] is a scale factor of the
procedure that recognizes the matriarch position of the best elephant in clan Elbert,cli :

Elbestcli = β× Elcentercli

where β ∈ [0, 1] is the second parameter of the procedure that controls the influence of
the Elcentercli defined as the clan-updating process:

Elcentercli =
1

ncli
×

ncli

∑
j=1

Elcli ,j,d

where 1 ≤ d ≤ D is the dimension of the dth term and denotes the dimension total space,
and ncli recognizes an unlimited number of elephants in clan i. In each clan i elephants,
which is shifted to the fresh positions as per the below equation (separating process):

Elworstcli = Elmin + (Elmax − Elmin + 1)× rand

where Elmin and Elmax are the minimum and maximum bound of the search space, and
rand [0, 1] is a stochastic distribution between 0 and 1.

EFEHO: To distinguish EHO from other population-based evolutionary procedures,
each candidate solution is linked to a matriarch. Here, “member” and “clan” are possible
solutions through the search space. A population of elephants is formed to build the EHO
procedure. The matriarch position of each elephant is then altered based on the elephant’s
and the clan’s experiences. The elephants should move towards better solutions. Every
elephant’s fitness can be assessed using an optimization problem’s objective function. The
authors employed a fuzzy system called Fuzzy PSO (FPSO) to propose stabilized fitness of
the recent best position of ith elephant (SFRBP (Eli)). This input is:

SFRBPEli =
Fitness

(
Elbestk

i

)
− FitnessKN

Fitness
(
Elbest1

i
)
− FitnessKN

where Fitness
(

Elbestk
i

)
is the fitness of the best previous position of ith elephant in kth

iteration, FitnessKN is the known real optimal solution value, and Fitness
(
Elbest1

i
)

is the
fitness of the of ith in 1st iteration. The second fuzzy input is the current value of the
scale factor for ith elephant Eli. The fuzzy output is a variation of factor cli. Each fuzzy
variable has three membership functions, namely small (Sm), medium (Me) and large (La),
as below:

µSm =


1 i f El < cl1
cl2−El
cl2−cl1

i f cl1 ≤ El ≤ cl2
0 i f cl2 < El

µMe =


0 i f El < cl1
El−cl1
cl2−cl1

i f cl1 ≤ El ≤ cl2
1 i f cl2 < El

µLa =


0 i f El < cl1
2
(

El−cl1
cl2−cl1

)
i f cl1 ≤ El ≤ cl1+cl2

2

2
(

cl2−cl
cl2−cl1

)
i f cl1+cl2

2 ≤ El ≤ cl2
0 i f cl2 < El
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where µ denotes the membership function, and cl1 and cl2 are the crisp inputs of clan of
elephants. The improved fuzzy rules are shown in Table 1.

Table 1. Improved fuzzy rules.

SFRBP
Scale Factor

Sm Me La

Sm La Sm Sm

Me La Me Sm

La La Me Sm

To analyse the effectiveness of the above techniques, we detect an inconstant nonlin-
ear system

cl1(k + 1) = θ1cl1(k)cl2(k), cl1(0) = 1

cl2(k + 1) = θ2cl2
1(k) + u(k), cl2(0) = 1

y(k) = θ3cl2(k)− θ4cl2
1(k)

where the real parameters are assumed to be θ = [θ1, θ2, θ3, θ4] = [0.5, 0.3, 1.8, 0.9]. The
known optimal value FitnessKN is set to zero for the EFEHO. The optimization is repeated
20 times. To optimise the parameters θ1, θ2, θ3 and θ4, the EFEHO procedure is used. The
EFHEO achieves great precision and fast convergence without premature convergence. The
goal is to apply the EFHEO technique to recognize system parameters (optimal elephants)
used for OTSU segmentation. The EFHEO-OTSU image segmentation procedure steps are
discussed below and illustrated in Figure 2:

(1) The image must be retrieved and pre-processed.
(2) Set the elephant’s and clan population’s initial positions at random.
(3) Use fuzzy by determining the scale factor for each particle based on the elephant’s

state.
(4) Rank the population based on individual fitness and carry out the upgrading and

segregation processes.
(5) Assess the population based on the most recently revised position.
(6) Assess each individual elephant based on its location.
(7) Iteration lengthens.
(8) Complete the procedure and return optimal elephants as an OTSU threshold value.
(9) Image segmentation based on a predefined threshold.

3.3. AD Detection Using DA-MIDL

Our technique is based on multi-instance learning. Bags are used to represent training
information in MIL. The bag-level label of each sample/bag is stored in the bag-level label
of each bag. X_i = {I_(i,j) }_(j = 1)ˆ(N_i), where I (i,j) is the j-th instance and N i is the number

of occurrences in X_i. Y_i = 0 only when ∑_(j = 0)ˆ(N_i)

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 2. Flow chart of EFEHO to OTSU. 

3.3. AD Detection Using DA-MIDL 
Our technique is based on multi-instance learning. Bags are used to represent train-

ing information in MIL. The bag-level label of each sample/bag is stored in the bag-level 
label of each bag. X_i = {I_(i,j) }_(j = 1)^(N_i), where I (i,j) is the j-th instance and N i is the 
number of occurrences in X_i. Y_i = 0 only when ∑_(j = 0)^(N_i) ▒ y_(i,j) = 0, otherwise Y_i 
= 1. Localized brain atrophy occurs early in AD. We consider a patient’s MR patch bag to 
be a positive bag to this aim. The hyper parameter is given in Table 2. 

Table 2. Hyper parameter values of DA-MIDL. 

Hyper Parameter Values 
Number of features (c) 512 

Learning rate 0.1 
epochs 60 

Patch (k) 64,000 
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Localized brain atrophy occurs early in AD. We consider a patient’s MR patch bag to be a
positive bag to this aim. The hyper parameter is given in Table 2.

Similarly, we put standard control patches in a harmful bag. Thus, many patch bags
with bag-level labels replace huge photos as training information for AD diagnosis. In
the recommended DA-MIDL technique (Figure 3), four phases are involved: selecting
instances for a bag X, transforming instance-level features (Patch-Net), combining altered
illustrations (Attention MIL Pooling), and classifying the combined bag-level features (G)
(i.e., Attention-Aware Global Classifier).
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Table 2. Hyper parameter values of DA-MIDL.

Hyper Parameter Values

Number of features (c) 512

Learning rate 0.1

epochs 60

Patch (k) 64,000

loss hyper-parameters (weight is λ and
temperature parameter is τ) 0.5 and 1.0, respectively
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2021 IEEE.

4. Experimental Outcomes and Discussions

The outcomes of our DA-MIDL with a segmentation approach and the competing
techniques on the test set from the ADNI AIBL dataset for AD categorization and MCI
conversion diagnosis are shown below. The recommended DA-MIDL technique with
optimal OTSU surpasses the other competing techniques (DA-MIDL [20], HFCN [23], and
proposed DA-MIDL with segmentation). The DA-MIDL technique with segmentation has
been validated on a variety of AD-related diagnosis tasks, including AD categorization
(AD vs. NC), MCI conversion diagnosis (pMCI vs. sMCI), and MCI categorization (pMCI
vs. NC and sMCI vs. NC). In this case, three measures are used to evaluate categoriza-
tion effectiveness: accuracy, sensitivity, and specificity. The measurements are described
as follows:

accuarcy =
TP + TN

TP + TN + FP + FN

sensitivity =
TP

TP + FN

speci f icity =
TN

TN + FP
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TP, TN, FP, and FN are indicated as true positive, true negative, false positive, and
false negative values. ACC, SEN, and SPE are computed utilizing the default threshold
of 0.5. AUC is computed on all pairs of actual favorable rates (TPR = sensitivity) and
false-positive rates (FPR = 1− speci f icity) by altering the thresholds on the diagnosis
outcomes from the trained DA-MIDL with a better odds OTSU network.

4.1. Accuracy Comparison Outcomes

The recommended technique has superior qualities regarding consistent convergence
characteristics and good computational exactness. As demonstrated in Figure 4, the sug-
gested DA-MIDL technique with segmentation usually beats the other DMIL and HFCN
in both AD-related diagnosis tasks. For illustration, the DA-MIDL with segmentation
achieves the best accuracy of 0.942 on the ADNI dataset, greater than DA-MIDL and HFCN.
For the AIBL categorization challenge, the DA-MIDL with segmentation technique also
produces a higher outcome of 0.865, which is higher than those of the previous techniques.
This finding suggests that DA-MIDL with the segmentation technique can deliver robust
performance across multiple databases.
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Figure 4. Accuracy comparison outcomes between DA-MIDL, HFCN, and the proposed DA-MIDL
with segmentation.

4.2. Sensitivity Comparison Outcomes

As shown in Figure 5, the recommended DA-MIDL technique with segmentation
basically beats the other DA-MIDL and HFCN in both AD-related diagnosis tasks. For
example, the DA-MIDL with segmentation attains better sensitivity (0.923) on the ADNI
dataset, which is better than DA-MIDL, and HFCN. For the AIBL categorization task, the
DA-MIDL with the segmentation technique also obtains better outcomes of 0.93, superior
to the existing process. These outcomes suggest that the DA-MIDL segmentation technique
can improve robust performance across different datasets.

4.3. Specificity Comparison Outcomes

As shown in Figure 6, the recommended DA-MIDL technique with segmentation
basically outperforms the other DA-MIDL and HFCN in both AD-related diagno-
sis tasks. For example, the DA-MIDL with segmentation achieves the best sensitiv-
ity 0.92 on the ADNI dataset, which is better than DA-MIDL and HFCN. For the
AIBL categorization task, the DA-MIDL with the segmentation technique also ob-
tains a better outcome of 0.93, superior to the existing process. From the overall
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performance of specificity outcomes, the recommended DA-MIDL with segmenta-
tion attained high specificity mainly because integrating fuzzy and EHO procedures
helped to reach a global optimum without getting stuck at a local optimum. The
segmented AD area is initially sent to the feature extraction module, where the fea-
tures are extracted. The categorization module uses the DA-MIDL classifier to detect
the AD.
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4.4. AUC Comparison Outcomes

The findings show that the recommended technique attains high AUC because opti-
mized OTSU multi-threshold segmentation based on EFEHO does not easily fall into the
optimal local solution, and its stability is better. As shown in Figure 7, the recommended
DA-MIDL technique with segmentation basically outperforms the other DMIL and HFCN
in both AD-related diagnosis tasks. For example, the DA-MIDL with segmentation achieves
the best sensitivity 0.923 on the ADNI dataset, which is better than DA-MIDL and HFCN.
For the AIBL categorization task, the DA-MIDL with the segmentation technique also
acquires a good outcome of 0.93, superior to the existing process.
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4.5. Execution Time Comparison Outcome

The validation phase execution time is provided in Figure 8 in accordance with current
studies in the process of evaluating the performance of the proposed model. Over the
course of 20 epochs, the suggested model took around 100 s to train. The time it took
to compute DA-MIDL and HFCN did not decrease significantly. Other performance
evolution indicators such as sensitivity, specificity, and accuracy showed that DA-MIDL
with segmentation had a superior prediction accuracy.
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5. Conclusions and Future Work

The timely screening of AD and MCI is critical for patient care and research. It is
commonly acknowledged that preventive actions are critical in delaying or reducing the
onset of AD. The primary problems for the categorization task of distinct phases of AD
progression are the smaller number of training samples and the greater number of feature
representations. This work uses computer image processing techniques to address this issue.
It combines an optimized OTSU multi-threshold segmentation based on EFEHO with a
DA-MIDL for computer-aided AD diagnosis. Our recommended DA-MIDL technique was
tested on 1689 patients from two separate datasets in several AD-related diagnosis tests. The
impact of picture segmentation means that the identification retains its original accuracy,
considerably enhancing image segmentation speed and matching real-time processing
needs. The test outcomes show that our technique can detect discriminative abnormal areas
in sMRI scans and outperform various conventional approaches.

Research is being done to increase accuracy by developing classifiers, potentially using
an ensemble technique and feature selection. In addition, we will investigate the imple-
mentation of automatic hyperparameter tweaking, utilizing the deep learning technique
and various optimization techniques, in future work.
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